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OPTIMAL CONTROL OF UNSTEADY STOKES FLOW AROUND A CYLINDER AND
THE SENSOR/ACTUATOR PLACEMENT PROBLEM

JOSIP LONČARIĆ∗

Abstract

Abstract. Effective placement of sensors and actuators is of crucial importance in flow control. Instead of
using combinatorial search to identify optimal locations, we pose a related problem of polynomial complexity.
If one could sense everything and actuate everywhere, what should one do? Using the unsteady 2D Stokes
flow around a cylinder as an example, we obtain the analytic solution of an optimal distributed control
problem and describe its spatial structure. At low circumferential wavenumbers or close to the cylinder wall,
boundary vortex generators are shown to be more effective than colocated vorticity damping. This analytic
solution has also been used to test numerical methods, demonstrating the importance of using discretization
which resolves all eigenfunctions of interest.
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1. Introduction. Given the task of controlling a physical system described by partial differential equa-
tions, one must first select sensors and actuators, then devise a controller for the resulting distributed system.
Although intuition and experience can sometimes help in the design stage, this approach fails when prior
experience is lacking. Confronted with a radically different problem, such as the possibility of using several
small sensors and actuators, one quickly finds that the number of possible configurations grows combinato-
rially. For example, [11] investigated the design optimization problem of placing M = 8 active struts into a
structure with N = 1507 possible locations, resulting in a discrete search space of approximately 6.5× 1020

possible designs. The search space grows dramatically as either N or M is increased.
While this formulation of the problem may be natural in structures composed of discrete components

such as struts, a different approach is needed in continuum problems where the number of candidate locations
is potentially infinite. We shall adopt the point of view that the search space for placement of sensors and
actuators may be reduced by performing a thought experiment in optimal control. This thought experiment
asks the following question: If one could sense everything and control everything, what should one do?

While distributed control is typically not feasible, it leads to the optimal design which we can try to
approximate by feasible designs. We anticipate that the optimal feedback law favors some spatial regions
over others. This can happen if the system dynamics exhibit spatially localized behavior, such as boundary
layers in flow control problems, or through a particular choice of the optimality criterion. In either case, we
espect that the optimal distributed feedback law will be of the form

u(a) = −
∫

Ω

κ(a, s)x(s)ds(1.1)

where u(a) is the optimal control input at each actuation location a in Ω, x(s) is the state variable at sensing
location s, κ(a, s) is the optimal feedback kernel and the integral ranges over the entire volume of the domain
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Ω. As observed by [1, 12], this integral may be approximated by neglecting the pairs of locations for which
κ(a, s) is small. The remaining pairs of locations where κ(a, s) is large define a reduced design search space.
The thought experiment can also be applied recursively, until the search for feasible and cost effective designs
becomes manageable.

Prior work on this problem focused on controllability and observability for distributed parameter sys-
tems, leading to to the concept of strategic actuators and sensors [5, 6]. This property can be completely
discontinuous. For the heat equation on the unit interval, a point actuator or sensor is strategic if and only
if its coordinate is an irrational number.

The computational method introduced in [10] is most suitable for design problems where a small set of
candidate locations is already heuristically determined. Combinatorial growth of computational complexity
is avoided by restricting attention to candidate sensor/actuator pairs. The pairwise dimensions of the
intersection of controllable and observable subspaces are computed first, and pairs are ranked in terms of
effectiveness and versatility. For each significant vibration mode of the testbed structure, the best pairs were
chosen based on a combined index defined in terms of the controllability and observability Gramians.

Computing the optimal κ(a, s) in (1.1) also leads to a problem of polynomial complexity, but without
initial assumptions about candidate locations. Given a discretization of space intoN3 locations, the linearized
dynamics can be described by a N3 ×N3 matrix and the optimal feedback found in at most O(N9) steps.
By contrast, in placing M sensors or actuators the discrete search approach would require the evaluation of

N3!
M !(N3 −M)!

≈ 2.8× 1053(1.2)

possible designs when N = 100 and M = 10. The cost of computing the optimal feedback kernel is much
lower, of order N9 = 1018. While not completely impossible, this is still daunting even in 2D problems,
where the computational cost would be of order N6 = 1012. Further reduction of computational complexity
is needed.

Instead of reducing spatial resolution, we shall focus on constructing a reduced order model of a particular
system. We shall seek to construct a sequence of reduced order models by using a modal approximation.
This approach may be rigorously justified provided that the system belongs to the class of spectral systems
defined in [2, 3]. In fact, we shall show how system dynamics of the unsteady Stokes flow around a cylinder
may be diagonalized, derive the exact optimal feedback kernel, and then construct its analytic approximation
whose worst case performance loss is less than 0.026 percent. We begin by formulating the problem.

2. Exterior Stokes flow problem. Much of our understanding of the full Navier-Stokes equations
begins with the Stokes flow, which represents their linearization around the motionless state [13]. Incom-
pressible fluid dynamics can be thought of as the response of the Stokes flow to forcing by the nonlinear
term. While the nonlinear term conserves the kinetic energy, a vorticity perturbation can grow via the vortex
stretching mechanism in 3D. In 2D, this mechanism is absent and the vorticity is conserved along particle
paths when viscosity and forcing are neglected. Consequently, the total enstrophy 1

2‖ω‖2 cannot increase
under the action of the nonlinear term alone [7]. Instead, additional vorticity is created at the solid bound-
aries in a process governed by the viscous sublayer and the Stokes flow equations. A correct understanding
of the boundary-fluid interaction becomes particularly significant when boundary control is contemplated.

The flow of incompressible viscous fluid around a cylinder is a prototype exterior flow problem. For
control purposes at low Reynolds numbers, vorticity creation at the solid boundaries and viscous dissipation
are the two physical processes of primary importance, while the conservative nonlinear term is secondary.
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This suggests that a simpler model in which the nonlinear term is neglected would still capture the essential
aspects of this flow control problem.

Consider the corresponding 2D Stokes flow in streamfunction representation described by the equations

v = −ẑ× ~∇ψ(2.1)

ω = ~∇×v = −∆ψ(2.2)
∂ω

∂t
= ∆ω(2.3)

where ψ is the streamfunction whose gradient rotated by −π/2 is the velocity field v. The boundary
conditions are

ψ|r=1 = 0(2.4)
∂ψ

∂r

∣∣∣∣
r=1

= 0(2.5)

lim
r→∞

~∇ψ = 0(2.6)

As is customary in 2D flows, the velocity v will be thought of as a 2-vector but ψ and the vorticity ω will
be considered scalars. Moreover, we shall interpret v as a finite energy flow perturbation.

At this point it is useful to note that the scalar second order elliptic equation ∆ψ = −ω must satisfy more
than two boundary conditions, which is only possible if the vorticity ω satisfies certain integral compatibility
conditions. As pointed out by [9], this compatibility is achieved by the creation of vortex sheets at the solid
boundary. This vorticity creation process at the wall couples to the exterior flow through viscosity, diffusing
the vortex sheet outwards in an arbitrarily short time. While the implicitly created vortex sheets involve
delta functions which present a challenge to numerical approximations, we intend to consider a family of
reduced order models which approximate the full dynamics by neglecting the highly stable modes. As we
shall show later, the retained modes can be expressed analytically in terms of smooth functions which can
be approximated numerically without much difficulty.

We are interested in flows for which the initial vorticity is contained within the computational domain
of radius R and the diffusion of vorticity across the artificial boundary r = R is negligible. To that end, let
us introduce coordinate variables ρ = log(r) and θ, then apply the Fourier transform in the θ direction. The
relevant operators may be written as follows:

~∇ =
1
r

[
∂
∂ρ
∂
∂θ

]
=

1
r

[
d
dρ

ik

]
(2.7)

∆ =
1
r2

(
∂2

∂ρ2
+

∂2

∂θ2

)
=

1
r2

(
d

dρ
− |k|

)(
d

dρ
+ |k|

)
(2.8)

This factorization of the Laplacian in Fourier representation separates the modes which grow and decay as
r → ∞. In complex analysis, this is equivalent to the Wiener-Hopf factorization, which has been used to
study boundary layer growth near the leading edge of a flat plate [8], but it will also prove useful in our 2D
problem. We note that this approach generalizes to higher dimensions via the Calderon projector [15].

As shown in [14] for the problem ∆u = f , whenever the forcing f vanishes outside the computational
domain, the boundary condition u→ 0 at infinity is exactly represented by the countably many conditions(

d

dρ
+ |k|

)
uk(ρ)

∣∣∣∣
ρ=log(R)

= 0, k = 0,±1,±2, . . .(2.9)

u0(log(R)) = 0(2.10)
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applied at the artificial boundary of the computational domain. These boundary conditions are nonlocal
and are best applied in the Fourier representation.

3. Pseudodifferential representation. Let us also introduce the following pseudodifferential repre-
sentation.

Definition 3.1. The pseudodifferential representation ξ of the flow state with the streamfunction ψ is
given by

ξk(ρ) =
1
r

(
d

dρ
+ |k|

)
ψk(ρ).(3.1)

This definition implies that

ξk(ρ) = −vθ
k(ρ)− i sgn(k)vr

k(ρ)(3.2)

where vθ and vr are the circumferential and radial components of the solenoidal velocity field, respectively.
We note that ξ is a real scalar field. Moreover, unlike the streamfunction or vorticity, ξ scales with velocity
as the physical length scale is changed.

Theorem 3.2. Given a function ξk(ρ), the streamfunction ψk(ρ) is

ψk(ρ) =
∫ ρ

0

e−|k|(ρ−σ)ξk(σ)eσdσ(3.3)

=
∫ r

1

(s
r

)|k|
ξk(log(s))ds .(3.4)

The proof follows by application of the variation of constants formula and the fact that the solid boundary
r = 1 is the streamline ψ = 0.

Furthermore, vk(ρ) = 0 clearly implies that ξk(ρ) = 0. The converse need not be true since ξk(ρ) = 0
implies only that vθ

k(ρ) = −i sgn(k)vr
k(ρ) which has nonzero solenoidal solutions derived from corner flows

ψk = 1/r|k| for r ≥ R. However, as an easy consequence of the above theorem, we conclude that when ξ

vanishes outside a bounded domain, v decays to zero at infinity.
Corollary 3.3. Whenever the support of ξ is contained within a bounded domain r < R, the corre-

sponding flow field satisfies the boundary condition v → 0 at infinity.
We can now prove a stronger result which holds even when ξ does not have compact support.
Theorem 3.4. The following boundary conditions on ξ and v at infinity are equivalent for continuous

functions ξ:

lim
ρ→∞ ξ = 0 ⇐⇒ lim

ρ→∞v = 0.(3.5)

The implication ⇐ is a trivial consequence of the definition of ξ. To obtain the implication ⇒, note
that the velocity field is linear in ξ. Let us write ξ = ξ0 + ξ∞ where the ξ∞ vanishes for ρ < log(R) and ξ0
vanishes for ρ ≥ log(R). The corresponding solenoidal velocity field is v = v0 + v∞ where v0 decays to zero
at infinity by the previous corollary. For v∞ we use the boundary condition ψ = 0 at r = 1 to obtain the
Fourier coefficients of the radial velocity

vr
∞,k(ρ) =

i k

r
ψk(ρ)(3.6)
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=
i k

eρ

∫ ρ

0

e−|k|(ρ−σ)eσξ∞,k(σ)dσ(3.7)

= i k

∫ ρ

log(R)

e−(|k|+1)(ρ−σ)ξk(σ)dσ(3.8)

for ρ > log(R). Since ξ decays to zero at infinity, define ε(k,R) by

ε(k,R) = sup
ρ≥log(R)

|ξk(ρ)|(3.9)

which leads to the inequality

|vr
∞,k(ρ)| ≤ ε(k,R)|k|

∫ ρ

log(R)

e−(|k|+1)(ρ−σ)dσ.(3.10)

Taking the limit ρ→∞, we obtain

lim
ρ→∞ |v

r
∞,k(ρ)| ≤ ε(k,R)

|k|
|k|+ 1

< ε(k,R)(3.11)

which holds for all k,R. Since ξ is continuous, its Fourier series converges absolutely and uniformly, and so
does the Fourier series for vr

∞. Given that ξ → 0 at infinity, the conclusion vr → 0 follows by taking the
limit R→∞. From the definition of ξk we then obtain that the tangential component vθ → 0 and the proof
is complete.

At this point the main advantage of the pseudodifferential representation has become clear. We shall
represent flows in terms of ξ, where ξ satisfies Dirichlet boundary conditions. By contrast, the velocity-
vorticity and the streamfunction-vorticity representations involve the difficulty of determining the vorticity
created at the solid boundary.

While the pseudodifferential representation has been defined in terms of its Fourier coefficients, an equiv-
alent physical interpretation in terms of singular integral operators can be found. The resulting equations
explicitly demonstrate the non-local nature of the pseudodifferential representation.

Theorem 3.5. Given a smooth streamfunction ψ, the pseudodifferential representation ξ is given in
terms of physical coordinates by

ξ(ρ, θ) =
1
r

(
∂ψ(ρ, θ)
∂ρ

+
1
π

∫ 2π

0

∂2ψ(ρ, θ − φ)
∂θ2

log
∣∣∣∣sin φ2

∣∣∣∣ dφ
)
.(3.12)

The proof follows by applying the convolution theorem to the terms in the integral and integrating by
parts, since the function −2 log | sin(x/2)| has Fourier coefficients 1/|k| for nonzero k. For nonsmooth ψ, this
equality may still be interpreted in the sense of distributions, or taken as an alternative definition of ξ. This
result can also be expressed in terms of the velocity fields.

Corollary 3.6. The pseudodifferential representation ξ is related to smooth divergence-free velocity
fields by

ξ(ρ, θ) = −vθ(ρ, θ) +
1
π

∫ 2π

0

∂vr(ρ, θ − φ)
∂θ

log
∣∣∣∣sin φ2

∣∣∣∣ dφ.(3.13)
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4. Reformulated Stokes flow problem. Besides the field ξ, we define the following three operators

Rf(ρ) = rf(ρ)(4.1)

B|k|fk(ρ) =
(
d

dρ
− |k|

)
fk(ρ)(4.2)

F|k|fk(ρ) =
(
d

dρ
+ |k|

)
fk(ρ)(4.3)

and their particular inverses

R−1fk(ρ) =
fk(ρ)
r

(4.4)

B−1
|k| fk(ρ) = −

∫ ∞

ρ

e−|k|(σ−ρ)fk(σ)dσ(4.5)

F−1
|k| fk(ρ) =

∫ ρ

0

e−|k|(ρ−σ)fk(σ)dσ.(4.6)

Given these definitions, the factorization (2.8) of the Laplacian may be compactly written as

∆|k|fk(ρ) = R−2B|k|F|k|fk(ρ).(4.7)

We shall also be using the commutativity properties

B|k|+aRa = RaB|k|(4.8)

F|k|Ra = RaF|k|+a(4.9)

BaFb = FbBa .(4.10)

While the above definitions are given in terms of Fourier components, physical interpretation of these
operators can be found. The following theorem is an easy consequence of the convolution theorem once we
observe that for positive σ the Fourier coefficients e−|k|σ represent the function

g(σ, φ) def=
sinh(σ)

cosh(σ)− cos(φ)
for σ > 0(4.11)

whose limit as σ → 0+ has all Fourier coefficients equal to 1 provided that it is defined to be

g(0, φ) def= π δ(sin(φ/2)).(4.12)

The function g(σ, φ) may be recognized as the Poisson kernel.
Theorem 4.1. The above operators and their particular inverses have the following physical represen-

tations:

R : f(ρ, θ) 7→ r f(ρ, θ)(4.13)

R−1 : f(ρ, θ) 7→ f(ρ, θ)
r

(4.14)

B : f(ρ, θ) 7→ ∂f(ρ, θ)
∂ρ

− 1
2π

∫ 2π

0

∂2f(ρ, θ − φ)
∂θ2

h(φ)dφ(4.15)

B−1 : f(ρ, θ) 7→ −
∫ ∞

0

1
2π

∫ 2π

0

g(σ, φ)f(ρ + σ, θ − φ) dφ dσ(4.16)

F : f(ρ, θ) 7→ ∂f(ρ, θ)
∂ρ

+
1
2π

∫ 2π

0

∂2f(ρ, θ − φ)
∂θ2

h(φ)dφ(4.17)

F−1 : f(ρ, θ) 7→
∫ ρ

0

1
2π

∫ 2π

0

g(σ, φ)f(ρ − σ, θ − φ) dφ dσ(4.18)
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where r = eρ, h(φ) = log
(
4 sin(φ/2)2

)
and g(σ, φ) is defined as above.

After shortening the notation by making the dependence on ρ implicit, the model problem is described
by the following theorem:

Theorem 4.2. The pseudodifferential representation of the Stokes flow around a cylinder is described
by the following equations:

ψk = F−1
|k| Rξk(4.19)

ωk = −R−1B|k|−1ξk(4.20)

vr
k =

i sgn(k)
2

R−1
(F|k| − B|k|)ψk = i kF−1

|k|+1ξk(4.21)

vθ
k =

1
2
R−1

(B|k| + F|k|)ψk =
(
|k|F−1

|k|+1 − I
)
ξk(4.22)

dξk
dt

= R−2F|k|−1B|k|−1ξk = ∆||k|−1|ξk(4.23)

with Dirichlet boundary conditions on ξk.

Equation (4.19) follows from the definition of ξ and the boundary condition ψ = 0 at r = 1. Equations
(4.21) and (4.22) also follow immediately. The equation (4.20) is verified as follows:

ωk = −∆ψk(4.24)

= −R−2B|k|F|k|ψk(4.25)

= −R−1B|k|−1R−1F|k|ψk(4.26)

= −R−1B|k|−1ξk.(4.27)

This result shows that whenever ξ vanishes for r ≥ R, so does ω. Conversely, given the boundary condition
v → 0 at infinity, one may invert the equation (4.20) and show that whenever ω vanishes for r ≥ Rω, so
does ξ. Both properties are desirable given the bounded computational domain.

Assuming that the initial vorticity distribution is contained within a smaller domain r ≤ Rω < R,
diffusion of vorticity out of the computational domain is insignificant for t � (R − Rω)2. By choosing
R � Rω +

√
T this reformulated problem can be made applicable for all t ≤ T . Provided that the initial

disturbance decays to almost zero by the time t = T , the forcing at the artificial boundary r = R will again
be negligible. In the limit R→∞, the pseudodifferential representation satisfies the the equivalent boundary
conditions over the entire exterior domain.

Finally, equation (4.23) is obtained from (2.3) as follows:

∂ω

∂t
= ∆ω(4.28)

R−1B|k|−1
dξk
dt

= R−2B|k|F|k|R−1B|k|−1ξk(4.29)

B|k|−1
dξk
dt

= R−1B|k|F|k|R−1B|k|−1ξk(4.30)

B|k|−1
dξk
dt

= B|k|−1R−2F|k|−1B|k|−1ξk(4.31)

dξk
dt

= R−2F|k|−1B|k|−1ξk(4.32)

where the last step follows from the enforced artificial boundary condition ξ ≡ 0 for r ≥ R. As R → ∞,
another justification of this step follows from the boundary conditions on ξ and the fact that the diffusion of
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any bounded compactly supported initial vorticity distribution is so slow that F|k|ωk(ρ) must remain zero
at infinity over all finite subsequent time intervals.

We can also interpret the relationship between ψ, ξ and ω in terms of Cartesian coordinates.
Corollary 4.3. Denoting the exterior points by Cartesian vectors x or y, the following identities hold:

ψ(x) =
1
2π

∫ ∫
1≤|y|≤|x|

ξ(y)
|x|2 − |y|2
|y||x− y|2 dy

2(4.33)

ξ(x) = − 1
2π

∫ ∫
|y|≥|x|

ω(y)
|y|2 − |x|2
|x||x− y|2 dy

2(4.34)

ξ(x) =
∂ψ(x)
∂r

+
1
2π

∮
|y|=|x|

d2ψ(y)
ds2

log
( |x||y| − x · y

2|x||y|
)
ds(4.35)

ω(x) = −∂ξ(x)
∂r

− ξ(x)
r

+
1
2π

∮
|y|=|x|

d2ξ(y)
ds2

log
( |x||y| − x · y

2|x||y|
)
ds(4.36)

where r = |x| and along the contour of integration y = y(s) where s = rθ is the distance.
The proof is based on theorems 4.1 and 4.2, and the observation that in Cartesian coordinates the

functions g and h simplify to

g(ρ− ρ′, θ − θ′) =
|x|2 − |x′|2
|x− x′|2(4.37)

h(θ − θ′) = log
( |x||x′| − x · x′

2|x||x′|
)

along |x| = |x′|.(4.38)

We shall consider the pseudoenergy 1
2‖ξ‖2 as equivalent to the kinetic energy 1

2‖v‖2. The following
theorem shows that this is justified whenever ψ(ρ, θ) approaches a function of ρ alone as ρ → ∞. This
situation applies to flows of interest, whose initial vorticity distribution is compactly supported and total
kinetic energy is finite.

Theorem 4.4. The total pseudoenergy is equal to the total kinetic energy and ‖ξ‖2 = ‖v‖2 whenever
the following sufficient condition holds:

lim
r→∞

∫ 2π

0

∣∣∣∣∂ψ∂θ
∣∣∣∣
2

dθ = 0 .(4.39)

Proof:

‖ξ‖2 =
∫ ∞

0

∫ 2π

0

ξ2r2 dθ dρ(4.40)

=
∫ ∞

0

∫ 2π

0

|Fψ|2 dθ dρ(4.41)

=
∫ ∞

0

∑
k

(∣∣∣∣dψk

dρ

∣∣∣∣
2

+ k2|ψk|2 + |k|
(
ψk
dψ̄k

dρ
+ ψ̄k

dψk

dρ

))
dρ(4.42)

=
∫ ∞

0

∫ 2π

0

|v|2r2 dθ dρ+
∑

k

|k||ψk|2
∣∣∣∣∣
∞

ρ=0

(4.43)

= ‖v‖2(4.44)

since at each ρ the infinite sum is bounded by

0 ≤
∑

k

|k||ψk|2 ≤
∑

k

|ikψk|2 =
1
2π

∫ 2π

0

∣∣∣∣∂ψ∂θ
∣∣∣∣
2

dθ(4.45)
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which vanishes at ρ = 0 due to the boundary conditions and as ρ→∞ due the assumption of the theorem.
Although an even milder assumption would suffice, we shall be satisfied with this result for the sake of
simplicity.

5. Diagonalization of the ξ dynamics. At this point, we can solve the eigenvalue problem and
obtain the modes of the pseudodifferential representation of the Stokes flow. First we shall consider a
bounded computational domain, and then let R→∞ to include the full exterior domain.

On a bounded computational domain, system dynamics are governed by the operator defined by

Akfk
def= R−2F|k|−1B|k|−1fk(5.1)

over the range 1 < r < R and 0 otherwise.
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-0.2

-0.1

0.1

0.2

0.3

Z k=10 m=1.3,1.7,2.1
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Fig. 5.1. Typical modes of ξ (left) and ω (right) vs. radius.

Theorem 5.1. The normalized solutions of the equation (Ak + m2)ξk = 0 restricted to the range

9



1 ≤ r ≤ R are linear combinations of the Bessel functions

Znm(r) =
Yn(mr)Jn(m)− Jn(mr)Yn(m)√

Jn(m)2 + Yn(m)2
(5.2)

where n def= ||k| − 1| and m is a root of the equation Znm(1) = Znm(R) = 0.
This theorem is proved by direct substitution. The operatorAk restricted to the interval 1 ≤ r ≤ R leads

to the Bessel differential equation with Dirichlet boundary conditions, whose solutions are linear combinations
of Jn and Yn. This self adjoint Sturm-Liouville eigenvalue problem defines a complete family of eigenfunctions
Znm which are orthogonal with respect to the weight function r:

∫ R

1

rZnm(r)Znp(r)dr =
δmp

2m2

(
r
dZnm(r)

dr

)2
∣∣∣∣∣
R

r=1

.(5.3)

For m = p� n and large R, the asymptotic expansion

Znm(r) ∼
√

2
πmr

sin(m(r − 1))(5.4)

applies and the integral (5.3) approaches (R−1)/(πm). Moreover, all eigenvalues −m2 are known to be real
and strictly negative.

Figure 5.1 shows typical mode shapes of ξ and the corresponding ω modes. Vorticity modes for low |k|
exhibit a balance between vorticity creation at the wall and dissipation in the exterior domain. At high |k|,
the time scales m� |k| show no significant activity in vorticity at the wall where

ω =
−2/π√

Jn(m)2 + Yn(m)2
∼ −2(m/2)n

Γ(n)
(5.5)

Due to the Γ(n) term in the denominator, these vorticity modes are virtually unobservable at the wall. This
has important implications for sensing.

50 100 150 200 250

-12.5

-10

-7.5

-5

-2.5

2.5

Fig. 5.2. Comparison of numerical and analytic eigenvalues for R = 100 and k = 0. Logarithm (base 10) of the relative

error is plotted. Virtually full machine accuracy is obtained up to the point of eigenfunction resolution failure near the 92nd

eigenvalue. Chebyshev discretization of 257 points in the ρ direction was used.
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Fig. 5.3. Logarithm (base 10) of the numerical eigenvalues computed at various resolutions (thin lines, N =

17, 33, 65, 129, 257) and the analytic eigenvalues (thick dots). Increasing the number of points helps delay resolution failure,

which still limits the number of correctly computed eigenvalues.

Comparing the analytic modes to the ones computed numerically using Fourier-Chebyshev spectral
methods, we achieved nearly full machine accuracy for properly resolved eigenfunctions (figures 5.2, 5.3 and
5.4). As soon as the Nyquist criterion is violated anywhere in the domain, numerical eigenvalues exhibit
nonphysical behavior. Those modes should be discarded as numerical artifacts. Care must be taken to
construct discretizations which simultaneously resolve all eigenfunctions of interest.

The case R → ∞ leads to a singular Sturm-Liouville eigenvalue problem. The system (4.23) may be
diagonalized by means of Weber’s transform [4]. This transform is a generalization of the Hankel transform.
The relevant transform pair applied to a function f(r), given our normalization of Znm, reads as follows:

Fm =
∫ ∞

1

f(r)Znm(r)r dr def= Wnf(5.6)

f(r) =
∫ ∞

0

FmZnm(r)mdm
def= W−1

n F .(5.7)

One may also show that Weber’s transform satisfies a relation of the Parseval type:∫ ∞

0

FmGmmdm =
∫ ∞

0

Fmmdm

∫ ∞

1

g(r)Znm(r)r dr(5.8)

=
∫ ∞

1

g(r)r dr
∫ ∞

0

FmZnm(r)mdm(5.9)

=
∫ ∞

1

f(r)g(r)r dr .(5.10)

A simple calculation shows that this transform diagonalizes Ak so that

WnAkW−1
n Fm = −m2 Fm(5.11)

and the ξk dynamics are described by

Ξkm
def= Wnξk(r)(5.12)

dΞkm

dt
= −m2 Ξkm .(5.13)
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Fig. 5.4. Plot density shows magnitude of numerically obtained modes from the least stable (top) to the most stable

(bottom) for the circumferential wavenumber k = 1, using Chebyshev discretization in the ρ direction. There are 257 grid

points from the cylinder wall at r = 1 (left) to the limit of the computational domain at r = 100 (right). The top portion is

physically correct. Lower modes are numerical artifacts traced to the resolution failure starting near the gridpoint 200 of the

eigenfunction shown at vertical coordinate 165, which corresponds to the 92nd eigenvalue.

One also obtains a simple expression for the pseudoenergy of the flow represented by ξ:

‖ξ‖2 def=
∫ ∞

1

∫ 2π

0

ξ(r, θ)2r dθ dr = 2π
∫ ∞

1

∞∑
k=−∞

|ξk(r)|2r dr(5.14)

= 2π
∞∑

k=−∞

∫ ∞

0

|Ξkm|2mdm .(5.15)

6. Invariant subspaces and optimal control. We have shown that the system dynamics (4.23) may
be diagonalized and that the invariant subspaces are of the form eikθZnm(r) where n = ||k| − 1| and m > 0.
Moreover, the pseudoenergy form (5.14) is also simplified. This diagonalization leads to a family of optimal
control problems which preserve the decomposition of the state space into invariant subspaces.

We shall seek to minimize the time integral of ‖εξ‖2 + ‖u‖2, the weighted sum of the pseudoenergy
norms of the flow state ξ and feedback u. By the diagonalization procedure described above, we are led to
the 1-dimensional LQR control problem

dΞkm(t)
dt

= −m2 Ξkm(t) + Ukm(t)(6.1)

12



min
U

η = m

∫ ∞

0

|εΞkm(t)|2 + |Ukm(t)|2dt(6.2)

where ε > 0 is a small gain parameter, m > 0 is real, and Ξkm(t) and Ukm(t) are complex scalars. The
solution will be of the form Ukm = −K(m) Ξkm. Since m is real, the performance measure reads

η =
m(ε2 +K(m)2)
2(K(m) +m2)

|Ξkm(0)|2(6.3)

where Ξkm(0) is the initial state. Solving for the optimal K(m) we obtain

K(m) = −m2 +
√
m4 + ε2.(6.4)

This optimal functional gain achieves its maximum at m = 0 and behaves as follows:

K(m) =




ε+O(m2) for m� √
ε

ε(
√

2− 1) for m =
√
ε

ε2/(2m2) +O(ε4/m6) for m� √
ε .

(6.5)

The optimal feedback law in Ξ representation is Ukm(t) = −K(m)Ξkm(t). The optimal performance measure
is η = mK(m)|Ξkm(0)|2.

6.1. Rational approximation of optimal feedback. While the above explicit solutions give the
optimal feedback, their analytic form is complicated. Fortunately, the performance criterion is not very
sensitive to perturbations in the optimal control. We may replace the optimal gain K(m) by a simple
rational approximation while increasing the corresponding performance measure η only slightly.

Consider K1(m) = ε2/(2m2 + ε) as the rational approximation to the optimal feedback. This expression
matches the behavior of K(m) as m → ∞ and reaches the same value at m = 0. The maximum absolute
error in gain is 0.121585ε, reached at m = 0.617541

√
ε. However, the maximum relative error in optimality

is

η1(m)− η(m)
η(m)

=
ε2
√
ε2 +m4

(
ε2 + 2 εm2 + 2m4

)
(ε+ 2m2) (ε2 + εm2 + 2m4)

(
ε2 +m4 −m2

√
ε2 +m4

) − 1(6.6)

and its maximum of 0.0114695 (less than 1.147 percent) is reached at m = 0.658911
√
ε. At other values of

m the relative error in optimality is even smaller, and typical relative loss in performance will be only one
percent or less. By contrast, the relative performance loss without any feedback tends to infinity as m→ 0.

The advantage of using the slightly suboptimal gainK1 is that this rational function may be immediately
linked to the resolvent of the original operator (with the same boundary conditions). The sequence of
transformations may then be inverted to conclude that the following theorem holds:

Theorem 6.1. Given a diagonalizable operator A such that its spectrum is real and negative, and a
simultaneously diagonalized performance measure η of type (6.2), the suboptimal feedback kernel

K1 = ε2 (βεI − 2A)−1
.(6.7)

where β = 1 results in worst case performance loss of 1.14695 percent relative to the optimal feedback
kernel. Denoting by −m2 the eigenvalues of A, the worst case occurs at m = 0.658911

√
ε. The worst case

relative performance loss is reduced to 0.6437126 percent when β = 0.89279 but it occurs at both m = 0 and
m = 0.748032

√
ε.
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The generalization β 6= 1 is obvious, and its optimal value reported above was obtained numerically.
Unless otherwise stated, we shall be using the value β = 1.

A better approximation would express the optimal gain as a sum of different resolvents. The following
theorem shows how this can be done.

Theorem 6.2. When z =
√
i/2 and p is real and positive, the expression

1
2

(
z

z + p
+

z̄

z̄ + p

)
(6.8)

approximates
√
p2 + 1 − p with worst case absolute error of −0.0182787 at p = 0.571448 and worst case

relative error of −3.48583 percent at p = 0.854638.

2 4 6 8 10

0.2

0.4

0.6

0.8

1

Fig. 6.1. Exact gain, its rational approximation (6.8) and their difference plotted as a function of
√

p. The approximation

underestimates the exact value only slightly, by less than 3.5 percent.

It is useful to note that this approximation can be written as <[z/(z + p)]. Further calculations demon-
strate that the worst case relative performance loss is 0.0256434 percent, reached at p = 0.617808 (figure 6.1).
Taking p to be the eigenvalue of −A/ε, we obtain the corresponding approximate feedback kernel as a sum
of two Green’s functions:

K2 =
ε

2

(
εz (εzI − A)−1 + εz̄ (εz̄I − A)−1

)
(6.9)

= ε<
[
εz (εzI − A)−1

]
.(6.10)

These results will be used to derive analytic approximations to the optimal feedback operator.

6.1.1. A simple example of rational approximation. The heat equation on an infinite line is ht =
hxx and can be diagonalized by Fourier transform so that ĥt = −k2ĥ. For this simple example, the spatial
representation of the optimal feedback kernel can be obtained analytically [16] in terms of the generalized
hypergeometric function 0F3. The exact expression for the optimal control is u(x) = − ∫ κ(x, x′)h(x′)dx′
where

κ(x, x′) = − (ε/π)3/2

(
1
2
Γ
(
−3

4

)
Γ
(

5
4

)
0F3

(
;
1
2
,
3
4
,
7
4
;−s4

)
−
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s2Γ
(
−5

4

)
Γ
(

3
4

)
0F3

(
;
5
4
,
3
2
,
9
4
;−s4

)
+

|s|π3/2
0F3

(
;
3
4
,
5
4
, 2;−s4

))
(6.11)

where we have defined s = (x− x′)√ε/4. The two rational approximations defined above evaluate to

κ1(x, x′) = (ε/2)3/2 e−2
√

2 |s|(6.12)

and

κ2(x, x′) =

√
ε3

4
√

2
e−|s| 2

√√
2+1 cos

(
π

8
− |s| 2

√√
2− 1

)
.(6.13)
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Fig. 6.2. Spatial form of the optimal feedback kernel for the heat equation on an infinite line. Left: the exact κ (6.11)

and its rational approximations κ1 and κ2 as functions of s for ε = 1. Right: error in the two rational approximations shown

using expanded vertical scale. See text.

For both rational approximations the maximum error occurs at s = 0 (figure 6.2). The exact value
of the feedback kernel at s = 0 should be −(ε/π)3/2Γ(−3/4)Γ(5/4)/2. By comparison, κ1 gives a 10.14
percent lower value while κ2 underestimates by only 1.27 percent. We have already shown that both of
these suboptimal strategies perform nearly as well as the optimal control. In spectral representation, the
corresponding worst case relative performance losses are less than 1.147 percent and less than 0.026 percent,
respectively.

We note that the κ2 exhibits sign changes starting at s = 5π
√√

2 + 1/16 ≈ 1.52541. This is qualitatively
correct since the exact feedback kernel κ also exhibits sign changes (spaced by approximately 1.12 at first)
starting at s ≈ 1.47894. The magnitude of the feedback kernel beyond that point is at most 0.000334ε3/2 so
this interesting behavior has little bearing on the form of the optimal feedback.

6.1.2. Rational approximation and 2D diffusion. Consider the heat equation in an infinite plane:
ht = ∆h. While the exact spatial form of the optimal feedback kernel could not be obtained analytically,
rotational symmetry leads to the rational approximations

κ1(x,x′) =
ε2

4π
K0

(
r

√
ε

2

)
(6.14)

and

κ2(x,x′) =
ε2

4π

(
1 + i

2
K0

(
r

√
(1 + i)ε

2

)
+

1− i
2

K0

(
r

√
(1− i)ε

2

))
(6.15)

where the distance between the points in the plane x and x′ defines r = |x− x′|. These expressions involve
the modified Bessel function K0, which has a logarithmic singularity at r = 0. The difference between these
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two approximations approaches its maximum as r tends to zero:

lim
r→0

(κ2 − κ1) =
ε2(π − 2 log(2))

32π
(6.16)

≈ 0.0174603ε2 .

6.1.3. Rational approximation and 3D diffusion. For the heat equation in 3D free space, the
rational approximations yield

κ1(x,x′) =
ε2

8πr
e−r
√

ε/2(6.17)

and

κ2(x,x′) =
ε2

4
√

2πr
e−r
√

ε(1+
√

2)/2 cos
(
π

4
− r

2

√
ε(
√

2− 1)
)

(6.18)

where r = |x − x′| is the distance between the two points in space. The origin r = 0 is now a simple pole,
where the difference between these two approximations approaches its maximum given by

lim
r→0

(κ2 − κ1) =
ε5/2

(
1 +

√√
2− 1

)
8
√

2π
(6.19)

≈ 0.0462423ε5/2 .

7. Approximately optimal control of Stokes flow. To obtain the rational approximation of the
optimal feedback kernel for equation (4.23), we first need to determine the Green’s function which solves the
auxiliary problem

εzµk −∆nµk = εzξk(7.1)

where n = ||k| − 1| and Dirichlet boundary conditions are applied.
The required Green’s function can be derived explicitly in terms of modified Bessel functions

Gn(r, s) = a2

(
In(amin(r, s))Kn(amax(r, s))− Kn(ar)Kn(as)In(a)

Kn(a)

)
(7.2)

where a =
√
εz. The solution can now be written as

µk(r) =
∫ ∞

1

Gn(r, s)ξk(s)s ds(7.3)

where µk and ξk are now expressed as functions of the radius. The rational approximations to the optimal
feedback kernel are obtained in terms of Gn.

From now on, we shall focus on the case z =
√±i/2 and refer to the resulting approximate kernel of

type (6.9) as simply κ̃.
Theorem 7.1. The rational approximation of type (6.9) to the optimal feedback kernel for the system

governed by (4.23) is given by

κ̃k(r, s) = ε< [Gn(r, s)] using a =
√
ε
√
i/2(7.4)

where n = ||k| − 1| and Gn(r, s) is defined by (7.2) for the indicated value of a.
These feedback kernels exhibit a pronounced ridge along the line r = s representing colocated sensing and

actuation. Figure 7.1 shows the typical form of control laws derived from feedback kernels κ̃k. The colocated
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Fig. 7.1. Feedback at r due to disturbance in ξk at s for ε = 0.001 and k = 1, . . . , 4.

control ridge becomes essentially flat for large |k|. However, this feedback gain does not yet provide spatial
clues because it is expressed in our nonlocal pseudodifferential representation. The spatial information we
seek involves returning to the vorticity representation. This can be done as follows.

We shall assume that the gain parameter ε is small and consider disturbances ξk whose support is
contained within a finite computational domain of size R� 1/|a|. Under these conditions, |amax(1, r, s)| �
1 and the Green’s function behaves as

Gn(r, s) ∼ a2 (min(r, s)n −min(r, s)−n)
2n max(r, s)n

(7.5)

when n 6= 0. This applies when k 6= ±1 and we obtain

κ̃k(r, s) ∼ ε2 (min(r, s)n −min(r, s)−n)
4n max(r, s)n

def= λ̃k(r, s) .(7.6)

For the special case n = 0, we obtain the expression

G0(r, s) ∼ a2 log(min(r, s))
(

1 +
log(max(r, s))
γ + log(a/2)

)
(7.7)

where γ ≈ 0.577216 is Euler’s constant gamma. The term log(a/2) evaluates to log(ε)/2− 5 log(2)/4± iπ/8
when z =

√±i/2. After some algebra, we obtain

κ̃±1(r, s) ∼ ε2 log(min(r, s))
2

(1 + α log(max(r, s))) def= λ̃±1(r, s)(7.8)

where α is defined by (7.13).

The asymptotic form of κ̃ will constitute our low gain rational approximation (denoted by L̃ and con-
sidered an integral operator with kernel λ̃(r, s)) which is applicable within the domain of radius R� 1/

√
ε.

The approximately optimal control in pseudodifferential representation is −L̃ξ, but to get its spatial inter-
pretation we must go back to the vorticity representation, where L̃k is transformed to

Lk = R−1B|k|−1L̃kB−1
|k|−1R .(7.9)
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Theorem 7.2. The low gain rational approximation to the optimal feedback kernel in vorticity repre-
sentation is given by

λ0(r, s) = ε2 log (min(r, s)/s) /2(7.10)

λ±1(r, s) = ε2
(
2 min(r, s)2 − s2(2α log(s)− α+ 2)− α) /(8rs)(7.11)

λk(r, s) = ε2
(
min(r, s)2|k| − |k|s2 + |k| − 1

)
/
(
4|k|(rs)|k|

)
(7.12)

where |k| ≥ 2 and the parameter α is given by

α =
8(π + 8γ + 2 log(ε2/32))
π2 + (8γ + 2 log(ε2/32))2

.(7.13)

This approximation applies within the domain of radius R� 1/
√
ε.

We note that if the support of ωk is contained within a computational domain of radius R, so is the
support of ξk and therefore the low gain approximation remains valid. One must also make a distinction
between |k| − 1 and n = ||k| − 1|, and pay attention to the limits of integration. Once that is done, the
theorem follows by a straightforward but lengthy calculation.

This result is given as a function of radius and the nearly optimal control law now reads

uk(r) = −
∫ ∞

1

λk(r, s)ωk(s)sds .(7.14)

As we have shown before, the maximum relative error of the rational approximation K2 is under 3.5 percent,
resulting in maximum relative performance loss of under 0.026 percent. The kernel λk(r, s) also involves the
low gain approximation, where the neglected term is of relative order O(ε). Since we expect that ε is in the
range of 1 percent or less, λk(r, s) is an excellent approximation to the exact optimal distributed feedback.
Using ε = 0.001 and R = 10, the maximum relative error of the low gain approximation remains under 2
percent.

7.1. How to control a particular vortex. We shall assume that a resolution limit on control and
observation exists, so that only the subsystems |k| ≤ K need to be considered. This assumption suggests an
evaluation of the control effort at each wavenumber.

Given a vorticity distribution ω which satisfies integral compatibility constraints, we shall focus at
the contribution of the vorticity near (r, θ) = (s, φ). Consider a particular vortex of the form ω(r, θ) =
δ(r − s)δ(r(θ − φ)) whose Fourier transform yields

ωk(r) =
δ(r − s)

2πs
e−ikφ .(7.15)

For simplicity, we shall take φ = 0 and consider the distributed feedback produced by the low gain
rational approximation. This single vortex in the flow induces a vortex sheet at the solid boundary, which
does not contribute to the control because the feedback kernel is zero for vortices at the boundary.

Distributed vorticity control (Fig. 7.2) exhibits two pronounced ridges within the bounded domain where
our low gain rational approximation applies.

The ridge along the line r = s represents the colocated control. Within the region of radiusR� 1/
√
ε this

control is zero for k = 0, grows logarithmically with r for |k| = 1, and saturates at a fixed value proportional
to 1/|k| for |k| ≥ 2. This control represents colocated vorticity damping, opposing the disturbance vortex.

Another ridge is present along the solid boundary. The magnitude of this control grows logarithmically
with s for k = 0, behaves as s log(s) for |k| = 1 and as s−|k|(s2 − 1) for |k| ≥ 2. This form of control creates
a vortex at the wall of the same orientation as the disturbance vortex.
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Fig. 7.2. Distributed vorticity control at r in response to a vortex at s for ε = 0.001 and k = 0, . . . , 5. Boundary control

and colocated control dominate.
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Fig. 7.3. Left: Boundary control (positive traces) and colocated control (negative traces) as functions of the radial location

of the disturbance vortex for ε = 0.001 and k = 0, . . . , 5. Right: Sum of boundary control and colocated control. Within the

region R � 1/
√

ε, boundary control dominates for |k| ≤ 2 or sufficiently close to the wall.

Figure 7.3 demonstrates that for |k| ≤ 2 more control is applied at the boundary than at the vortex
location (within the region where low gain approximation holds). For |k| ≥ 3, boundary control still domi-
nates within a thin layer along the boundary, but colocated control is preferred in the rest of the domain.
Using the low gain approximation, analysis and numerical experiments indicate that for |k| ≥ 3 the region
of boundary control dominance does not depend on ε and extends to

s = p+ q

√
1− p|k| + |k|(p2 − 1)

|k|(|k| − 2)
(7.16)

where p = 21/(|k|−2) and q ≈ 0.9± 0.01.
Although boundary control dominates for low |k| and near the solid boundary, the control input depends
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on the vorticity distribution within the flow. Vorticity at the wall has zero impact on the control. Therefore,
sensing vorticity at the wall is not directly useful. One must estimate the flow state away from the wall.

8. Conclusions. The analytic expressions we obtained were used to validate a numerical scheme based
on Fourier-Chebyshev spectral methods. While full accuracy was achieved for properly resolved eigenfunc-
tions, numerical artifacts were observed in other cases. This reinforces the obvious but important point that
the chosen discretization must simultaneously resolve all eigenfunctions of interest throughout the computa-
tional domain.

The analytic form of the approximately optimal feedback shows that boundary control dominates for
|k| ≤ 2 or when the vorticity disturbance is sufficiently close to the wall. We obtained explicit estimates on
the distance from the wall within which the optimal control favors actuation by means of boundary vortex
generators.

We have also shown that vorticity at the wall does not influence the optimal control. The control effort
depends on estimating the flow state away from the wall. This is a dual problem to the results reported
here. The mode shapes in vorticity representation show that some modes are virtually unobservable at the
wall, leading to limits on the effectiveness of boundary sensing. In future work, we hope to report on the
estimation problem, and to extend this approach to more complex flows.
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